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Abstract. Probabilistic models are widely used in evolutionary andtesl algo-
rithms. In Genetic Programming (GP), the Probabilistict®ygpe Tree (PPT) is
often used as a model representation. Drift due to samplagj$a widely recog-
nised problem, and may be serious, particularly in deperui@bability models.
While this has been closely studied in independent proipabilodels, and more
recently in probabilistic dependency models, it has rexklittle attention in sys-
tems with strict dependence between probabilistic vaemblch as arise in PPT
representation. Here, we investigate this issue, and miressults suggesting that
the drift effect in such models may be particularly sever® severe as to cast
doubt on their scalability. We present a preliminary analytsrough a factor rep-
resentation of the joint probability distribution We suggéuture directions for
research aiming to overcome this problem.

1 Introduction

A wide range of evolutionary algorithms learn explicit patiiity models, sampling
individuals from them, using the fitness of individuals talate the model. They range
from Colorni and Dorigo’s Ant Colony Optimization (ACO) [Hnd Baluja’s Popula-
tion Based Incremental Learning (PBIL) [2] through Mueldeim and Manig’s Factor-
ized Distribution Algorithm (FDA) [3] or Pelikan's BayegiegOptimization Algorithm
(BOA) [4] to Salustowicz and Schmidhuber’s Probabilisticilemental Program Evolu-
tion (PIPE) [5]. Historically, different strands of thissearch have developed in relative
isolation, and there is no acknowledged single term to dws¢hem. In this paper, we
refer to such algorithms as Estimation of Distribution Adigfams (EDAs), acknowledg-
ing that this may be wider-than-normal usage.

When EDAs are applied to Genetic Programming (GP) [6] proislethe most
obvious question is what statistical model to use to reprtebee GP solution space,
and how to learn it. This question has drawn most of the atteiaf researchers in this
field, with consequent neglect of the sampling stage of EDAaorithms.

In GP, many EDAs have used variants of the Probabilisticd®ype Tree (PPT)
as their proability model, beginning with PIPE [5] and exting to Yanai and Iba’s
EDP [7], Sastry etal.'s ECG) [8], Hasegawa and |Iba’s POLELB6pks et al.'s BOAP [10]
and Roux and Fontupt’s Ant Programming [11]. The PPT is a enimnt model for rep-
resenting probability distributions estimated from tnedividuals. However Hasegawa
and Iba already noted that it suffers from some represemi@tproblems, and proposed
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the Extended Parse Tree (EPT) variant [9]. What has not heedied is the effect on
sampling drift of its implicit dependence model.

Sampling drift effect is an important problem for all prollay models. However
the strict probability dependence in the PPT greatly aneglithis effect relative to
the other major sources of bias in EDAs (selection pressodel@arning bias), thus
becoming a critical issue in scaling of PPT-based EDAs igdascale problems.

In this paper, we examine this problem both empirically arathramatically. We
designed two simple problems, closely related to the wedivkn one-max and max
problems, with simple fitness landscapes to reduce thetefiéother factors. We com-
pare the behaviour of a PIPE model with a PBIL-style indepandhodel to illustrate
the amplified effect of sampling bias. We mathematicallyestigate how the factorised
distribution implicit in the PPT model causes this increbsampling bias.

In section 2, we present a brief overview of EDAs and of PPTlse experiments
are described in section 3, with their results following éttson 4. Section 5 analyse
the factorisation implicit in the PPT. We discuss the imgtions of these results in
section 6, drawing conclusions and proposing future divastin section 7.

2 Background Knowledge

2.1 Estimation of Distribution Algorithms

EDAs are evolutionary algorithms incorporating stoctasibdels. They use the key
evolutionary concepts of iterated stochastic operatisistiawn below:

generate N individuals randomly
while not termination conditiodlo
Evaluate individuals using fitness function
Select best individuals
Construct stochastic model from selected individuals
Sample new population from model distribution
end while

They differ from a typical evolutionary algorithm only in el construction and sam-
pling. All EDAs use some clas$1 of probability models, and a corresponding decom-
position of the structure of individuals. Model constroctispecifies a model froovt

for each component. Sampling a new individual traversesdneponents, sampling a
value from each model, so that the sample component distibreflects the model’s.

In the simplest version, PBIL, the probability model is atee®f independent proba-
bility tables, one for each location of the phenotype.

2.2 Probabilistic PrototypeTrees and EDAs

PPT-based EDAs use a tree structure to store the probadigitiyjbution. Given a pre-

defined instruction set of maximum arity, the PPT is am-ary full tree storing a

probability table over the set of instructions. PPT was fisgtd in PIPE [5], where each
node contained an independent probability table. ECGPxj&heled this by modelling

dependence between PPT nodes as in the Extended Compatic@égerithm [12].
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EDP [7] instead conditioned each node on its parent. BOAPIEEONnt Bayesian net-
works (BN) of dependences in the PPT, while POLE [9] learnsBBpresenting de-
pendences in an "Extended Parse Tree”, a variant of the PPT.

2.3 Benchmark Problems

One Max is the near-trivial problem of finding a fixed-length binatsirsg maximising

the sum of all bits [13]. Its fithess landscape is smooth wiHatal optima. Thus it
is well-suited to the PBIL independent-probability modedjng a probability vector
V =[E4,..., E,] over the value sef0, 1} to represent the locations in the string.

The Max problem is a generalisation of one-max, where the goal is to find tlyekt-
valued tree that can be constructed from a given functiohaetl terminal set T, in a
given depthD [14]. Typically I = {x,+} andT = {0.5}. This appears well-suited
to the "independent” probability model of PIPE, in that eacile of the PPT —in this
case, a full binary tree — holds an independent probabdlhet, giving the probability
of selecting each element éfu T'. The simplest case of maX,= {+}, T = {0,1}

is closely related to one-max;, in that once the system hagdfaudfull binary shape, the
remaining problem, of filling the leaves with 1, is essehtitie one-max problem. We
note that in making this comparison, we are, in effect, magie nodes of the PPT
tree to corresponding locations in a PBIL chromosome.

2.4 Grammar Guided Genetic Programming

To set the context for this study, we compare the performah@ on the same prob-
lems; we can’t use a standard GP system for this, becauseiitaisle to enforce the
constraints of the one-max problem. For fair comparisonuge a Grammar Guided
GP system (GGGP) [15].

3 Experimental Analysis

Our experiments illuminate sampling drift in PPT-based ED&omparing it with a
well-understood model (PBIL). We need to specify four asmec

the probability model structures
the fitness functions

the EDA algorithm
experimental parameters

PN pRE

To illustrate, we use the max problem, and a slight variardref-max, with the same
target as max (but a more one-max-like fitness function). @apare with a conven-
tional GGGP approach to show the intrinsic simplicity ofda@roblems. For economy
of explanation, we describe the max problem first.
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3.1 Model Structures

The genotype representationis a 15-long string’ = X3, ..., Xy5. This can be used
in either of two ways: the string can be modelled through a@efrendent, PBIL-style
genotype, or it can be mapped to a binary PPT of depth 3 (whishb nodes).

In the PBIL structure each location contains an independent probability tabté wi
three possible values;, x and0.5. The table is used to generate sample values at each
generation, then is updated to reflect the sample distabwtf the selected individuals.

In the PPT structureeach location contains an independent probability tabés the
values+, x and0.5, but each (except the leaves) has two children, with théioalship:

left child (X;) = X;x2
rlgh Chlld(Xl) = Xi><2+1

"Independence”in the latter case must be taken with a grain of salt. Whilepttod-
ability tables in the PBIL structure are independent, th& Bffucture introduces a de-
pendence: the descendants of a node holding the (termiadak®.5 are not sampled.
This is the primary issue under consideration here.

3.2 Max Problem Fitness Function

Fitness is defined by the following equation:

itFit (left child (X;)) x itFit(right child(X;)) ifX; = x,1<i<7
itFit (left child (X;)) + itFit (right child (X;)) ifX; = +,1<i <7

itFit (X;) = { 0.0 ifX;, = x,8<i<15
0.0 ifX; =+,8<i<15
0.5 ifX; =05

When+, x were used in leaf nodes, there is a problem in allocatingdithgince
they have no children. To overcome this, in this case we @igentfitness 0. The max-
imum value of this function (the target) corresponds to alirlary tree with+ in the
bottom two layers, and- or x in the top layer.

3.3 Variant One-max Problem Fitness Function

The task is to find a string having a specific value in each lopatiefined by dividing
the locations into three groups, as in equations 1.

L1 = {X1}
Ly ={X;}2<i<7
Ly ={X;} 8<i<15 1)

In this case, the fitness function is given by equation 2:

omFit(X) = >1°, locFit(X;) (2)
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where

1ifX;=x andX; € Ly
1ifX;,=+ andX; € Ly
1 if X; =05 andXi € L3
0 else

locFit (Xz) =

This differs from the typical one-max problem in two wayset& are three possible
values, not two, and target values at differ with locatioowidver neither makes much
difference to the fitness landscape, which remains smodtih ne local optima.

3.4 EDA System

In these comparisons, we use a very simple EDA system sathatiplications of the
experiments are clear. In detail:

Selection:truncation. Given a selection ratig the topA proportion of individuals are
selected. We varied the selection ratito investigate the effect and scale of drift.

Model Update:the model structure was fixed for the whole evolution. Maximlike-
lihood was used to estimate the probabilities from the setesample.

Sampling: we used Probabilistic Logic Sampling [16], the most stréfgyfward sam-
pling method, used in most EDA-GP systems.

To simplify understanding, two common EDA mechanisms wtdah slow drift,
elitism and mutation, were omitted from the system

3.5 Parameter Settings

We used truncation selection with selection ratios ranfjiogn 10% to 100% at a 10%
interval. The population size was 100, and the algorithm miasfor 200 generations.
Each setting was run 30 times. Detailed parameters sefiimgee GGGP and EDA-
GP runs are shown in table 1, while the grammar used for GG@&R gtarting symbol

EXP,) is shown in table 2

Table 1. Experimental Parameter Settings

General Value| EDA Value| GGGP Value
Parameters Parameters Parameters
Genotype Operators Operators
Length 15| Selection Truncation Selection Tournamedt
Values |+, x,0.5 Ratios 0.1,...,1.0| Size 5
Update |Max. Likelihood Cross. prob. 0.5
Sampling PLS  Mut. prob. 0.75
Population 50| Dependence Reproduction Generational
Generations 200 PBIL independent
Runs 30 PPT PPT
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Table 2. GGGP Grammar
EXP; — EXPi41 OP EXP4 (0 <i<4)
EXP; — OP
OP — +|x|0.5
4 Result of Preliminary Experiments

4.1 One-Max Results

Fitness

o N A O ©

i LT —

26 4‘0 66 86 1(‘)01é91401(‘5018‘§0200 26 4‘0 66 86 1(‘)01é91401(‘5018‘§0200
Generation Generation

Fig. 1. Best Fitness vs Generation for One-max Variant (Structueé,: PBIL, right, PPT,
percentage is the selection ratio)

Figure 1 shows the performance of the two probability madsisvarious levels
of selection. Each plot shows a particular structure forregeaof different selection
ratios. Each line represents the best fithess achieved ingeaneration, for a particular
selection ratio. By comparison, GGGP finds perfect solstioni4.3 + 4.9 generations.

We note that even for this near-trivial fitness function, P#Pibws worse perfor-
mance than PBIL. In the left-hand plot, the PBIL structureléira solution close to
the optimum (15) at most selection ratios other than 90% &844l(i.e. no selection).
These results are replicated for the selection ratios raitgul, most showing perfor-
mance very close to the optimum, as with the 40% selection. &y comparison, the
PPT model shows much worse performance. In all selectioosta®PT converges to
sub-optimal solutions. The difference increases with weaklection, with the 100%
ratio showing a substantial decrease in fitness, below tfdeeed by random sam-
pling. With selection pressure turned off, this drift is tresult purely of sampling.
With increasing selectivity, the drift effect becomes weabut still acts counter to the
selection pressure.

4.2 Max Problem

This problem is much tougher than the previous. GGGP findegtesolutions in 7.8+
8.0 generations. However EDA performance fares far worse. Bik fodel is unable
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Fig. 2. Best Fitness vs Generation for Max (Structure : |€f31 L, right, PPT, percentage is
the selection ratio)

to find the optimum solution (4) at any selection ratio, anel dlifferences from the

optimum are larger than for one-max. Given that the fitnesstfan has epistasis, which
PBIL is unable to model, this is not surprising. What is sisipg is the even poorer
performance of the PPT model. PPT appears well-matchecethttiess function, yet
performs much worse than the naive PBIL model. PBIL is abladbieve fitnesses,
for some selection ratios, of around 3.4, whereas PPT newerds 2.7. the effects
are particularly marked around selection ratios from 10%ugh to 60%, with the

differences becoming weaker by 80% to 90%, and essentigfpgearing at a 100%
selection ratio.

4.3 Performance of PPT

Overall, we see poor performance from the PPT model for biotiple and complex
problems. Even for the max problem — the kind of problem tHif Was designed to
solve — it shows much worse performance than PBIL. The behavinder 100% se-
lection — i.e. pure sampling drift — suggests a possible eatiiat sampling drift [17]
may be the major influence on peformance. The poor perforenanche trivial fit-
ness landscape of the one-max variant supports this. The gerformance of GGGP
emphasizes just how damaging this effect is.

5 Analysis of the PPT Model

5.1 The Effects of Arity

In a PPT, each node represents a random variable which caratgkof the possible
instructions as its valukTable 3 shows a typical example for the case of symbolic
regression, with a function set consisting of the four bjrenithmetic operators, four
unary trigonometric and exponential operators, and a bkriand constant, of arity 0.

! nodes at the maximum depth are only permitted values of zitsg laut for the sake of sim-
plicity we omit this from consideration here.
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Table 3.PPT Table for Symbolic Regression, Showing Arities

InstructionArity | Probabilityl| InstructionArity |Probability
+ 2 0.1|sin 1 0.1
X 2 0.1j|cos 1 0.1
- 2 0.1)|log 1 0.1
/ 2 0.1|exp 1 0.1
x 0 0.1|C 0 0.1

The combining of nodes of different arities in the PPT modehtes a dependence
relationship between parent and child nodes, even thowaghgtobability distributions
appear to be separate. If a nadeis sampled as sin, one of the child nodes — conven-
tionally ns — loses the opportunity to sample an instruction. Therdfwg@robability of
samplingns is different from that ofi,, the other child node. Thus although the prob-
ability distribution ofns is independent of the condition set of, ns is nevertheless
dependent on the complete condition setpfbecause the probability of sampling an
instruction forng is 0 in the case where a unary function or variable is sampled.a

To clarify this dependency, we transform the PPT probatdlistribution to a semi-
degenerate Bayesian netwdrk.

5.2 Conversion to Semi-Degenerate Bayesian Network

Undefined instruction In the PPT, each node’s probability table cannot be directly
treated as a random variable, because the probabilityldistn for some conditions
of the parent is not recorded in the table. To cover this aalsere a node can not select
any value, we define an additional valuefor 'undefined value’. Taking a simple case
with just three valuest, sin andC, an independent PPT might have probabilities of
0.4 for+ and sin, and 0.2 fo€'. Taking account of the parent-child dependencies, we
could represent the overall conditional dependency of daanvariable for a node
given its parent, as in figure 3. In the parent nodébf, any of+, sin,C or U might
be sampled. Whe@', constant, is sampled/4 is not able to sample any value, so that
the probabilities for selecting, sin andC' are zero; to represent that no instruction can
be sampled in this condition, we allocate the 'undefinediriregion a probability of
1.0. If the parent node is sampled as 'undefindd4 must also be undefined.

Figure 4 shows more detall, illustrating how a simple thneele PPT can be trans-
formed into a (semi-degenerate) BN. Note that the probgisiliuctures of the left and
right children differ (because of the differing effects bétsin function in the parent).

5.3 Factorization of Full Joint Distribution

Dependent variable In the resulting BN, the transformed nodes become condilipn
dependent on their parent nodes (there are only two exeepticeither the node is

2 |n standard terminology, tables without zeros are said todredegenerate, and tables con-
taining only 0.0 and 1.0 are degenerate. We introduce the’'semi-degenerate’ for the inter-
mediate case, of tables containing 0.0 but not necessagly 1
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+ sin |[C | U

+ |04 (04|00 00
sin |0.4 | 0.4 |0.0 | 0.0
C |02|02)|0.0|00
U |0.0 |00 (1.0[1.0

Fig. 3. Transformed Probability table of PPT

PPT Transformed PPT
M, + |04
+ 0.4 M, -
sin |0.4 sin |0.4
c o2 c |02
: (+, sin) (+)
o st V w " / \ "
M; M; - -
+ sin | C + sin |C
* 0.4 + 0.3
- - + 0.4/04 00 + 0.3|0.0 |00
sin | 0.4 sin |1 0.3
c To2 c loa sin |0.4 (0.4 (0.0 sin | 0.3 0.0 [ 0.0
: i c 0.2/02 0.0 c 0.4 0.0 |0.0
u 0.0 /0.0 (1.0 u 0.0 (1.0 |1.0

Fig. 4. Transformation from PPT to semi-degenerate BN

always undefined, hence unreachable and may be omitted frerRRT, or else the
node is always defined, implying that the parent node caraopte a terminal, an
unreasonable situation in GP — both may be safely ignored).

In the simplest PPT case, where each node’s value is assuimiealydistically in-
dependent of the other nodes, the only dependence is tatgaebove. That is, this
simple case corresponds to the assumption that each nodiedgionally independent
of all other nodes in the PPT, conditioned only on its par€risis the probability dis-
tribution of noder can be represented byz|parent ofr), and the full joint probability
distribution of the transformed PPT as:

p(X) = Hp(mi|$parent ofi) )

3

Of course, more complex dependencies between PPT nodesveaisg to more com-
plex dependencies in the corresponding BN, but the depeedsrihe child on its par-
ents will always remain.
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Fig. 5. Entropy of Population vs Generation (Left: One-max Vari&ight: Max (ind : indepen-
dent — PBIL — structure))

Sampling bias This factorization of the joint distribution gives us a wafyunder-
standing the rapid diversity loss in PPT-based EDAs. In Pai8ding, for each ran-
dom variable, the sample size is the same in the transforfA&dHowever the actually
meaningful instructions exclude undefined instructioriee Size of the sample actually
used to generate meaningful instructions reduces (expiatigywith depth. This is the
cause of the rapid diversity loss due to sampling drift: kenlother EDAs, in which
the sample size is the same across all variables, driftaseedue to reduced sample
size with depth. Figure 5, shows the population (phenotgpeppy at each generation.
We only show the 100% selection ratio, because there, tkeme diversity loss due
to selection, the whole loss is the result of sampling dhiftboth problems, the loss
of diversity due to sampling drift is much greater in the PBpresentation than in the
PBIL representation.

6 Discussion

The importance of these results lie not merely in their diplications for this trivial
problem, but in their implications for PPT-based EDAs for GBmpare these problems
with typical GP problems. The dependency depth is atypicatiall, corresponding to
a GP tree depth bound of only 3. The dependency branchingiisatly or even slightly
below average, for GP. And of course, the fithess landscapestl/ simpler than most
GP problem domains. If this is so, why has EDA-GP been ableitceed, and even
demonstrate good performance on some typical GP problered?elléve it is due to
masking of the problem of accelerated drift under samplingpical implementations.
These implementations generally incorporate mechanigahscing the effect of
sampling drift: better selection strategies and model tepateechanisms, adding elitism
and mutation all contribute to this reduction. In additiony problem is tougher than
typical GP problems in one respect: there is only one solutiwo for the max prob-
lem). Most problem domains explored by GP have symmetrethat eliminating a
solution may not stymie exploration. Thus EDA-GP has beda mbwork well for GP
test problems. However the drift effect worsens expontntigith tree depth, while
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these ameliorating mechanisms only scale linearly. Parttapis why EDA-GP has so
far been limited to demonstrations on test problems ratteer practical applications.

Some previous PPT research, notably Hasegawa and Iba’s PI)LiEcorporates
measures to ameliorate sampling drift using the ExtendeseP&ee. Here, our focus
is to clarify the effect of accelerated drift due to PPT degenty, as a preliminary to
investigating solutions.

7 Conclusions

Diversity loss due to sampling is a well-known problem in EB&earch, and has been
carefully studied for independent probability modelss ivell-known that the the prob-
lem worsens in probabilistic dependency models, and somerlbounds for the effect
have already been found [17]. However there does not appesave been previous
publication of the effects on PPT-based (branching) EDAs.

By studying the sampling drift effect of two structures, onear-trivial optimisa-
tion problem and another only slightly harder, we were ablede the importance of
this diversity loss. The effects are sufficient to cast dauthe scalability of most cur-
rent approaches to EDA-GP. Can these problems be overcoare8d@lable EDA-GP
systems be built? We believe it to be possible, but not easy.rAmedy must coun-
teract the depth dependence of the drift. This probablyiettes variants of some of
the traditional methods. For example, it is difficult to semvhto incorporate depen-
dence depth into population-based mechanisms such asrel@imilarly, it doesn’t
seem easy to use mutation or similar mechanisms in a usqith-diependent way. On
the other hand, it may be possible to incorporate depthebamehanisms into model
update and/or sampling in ways that might be able to overdbmeepth-dependence
of sampling drift, and so permit scaling.

In the near future, we plan to extend this work in three diogxst. The first, already
in progress, involves experimental measurement of diyelsss to gauge the extent
of acceleration of the sampling drift effect. The secondpiiaspect, will attempt to
mathematically estimate the diversity loss through samsfe estimation. The third
extends this work to grammar-based GP EDA systems (i.eethosbased on PPTSs).
Similar problems of accelerated sampling bias occur indlsgstems, though it is more
difficult to isolate clear demonstrations of this.
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